大师网-带你快速走向大师之路 解决你在学习过程中的疑惑,带你快速进入大师之门。节省时间,提升效率

深度智能的崛起(二)


“我设想在未来,我们可能就相当于机器人的宠物狗,到那时我也会支持机器人的。”——克劳德·香农

人工智能定义

信息技术领域从来不缺乏流行词,从IT到DT,从云计算到框计算,从数据库到数据湖,从弱AI到强AI,从机器学习到机器智能…一堆眼花缭乱的技术名词,让人云里雾里。当谈及AI时,更是这样,有人工智能,也有机器学习;有机器学习,还有神经网络和深度学习;有感知计算,还有认知计算;还有机器视觉、机器人、自然语言、符号逻辑等若干概念和技术方向。我们先不用纠结这些繁杂的技术术语和概念,这些知识在任何一个搜索引擎或者AI教材书籍上都能查到,重要的是抓住关键矛盾,理清其逻辑联系。为了界定人工智能,我们首先要理解什么叫智能?智能通常可以被描述为感知信息的能力,并将其作为知识应用于环境的适应性行为,虽然还有很多关于智能的解释,但智能的本质基本上都涉及学习、理解以及为了解决实际问题而对学到的知识加以应用。智能至少包括三个方面的能力:理解、分析、解决问题的能力;归纳、演绎推理能力;自适应生存和发展能力,而这三方面的能力都离不开学习。这也是我们前文着重强调机器学习这一关键AI技术的原因,当然传统的符号逻辑构建的规则式AI系统也能一定程度上进行计算和推理,但他的学习是人类知识的嵌入式设计和灌输,机器本身并无自学习能力。

简单来讲,人工智能是指一套广泛的方法,算法和技术,可以使机器或系统看起来像人一样聪明,人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。人工智能最具代表性的解决方案包括IBM的沃森(Watson),苹果的Siri,谷歌的AlphaGo,还有亚马逊的Alexa等等。一句话,人工智能可以理解为模拟人类智能的软硬件系统。要做到这一点,AI首先需要能感知信息,并确定哪些信息有用;其次要能学习到相关特征和制定出问题解决的规则;最后AI要能调整优化自己,升级迭代智能水平。根据上述理解,AI不仅是分析数据,还要能解释数据,不仅是获取洞察和理解规则,还要能进行预测,最重要是能通过学习来提高自己!

人工智能的三个层次

一般来讲,传统的符号逻辑方法及一般的统计机器学习方法以科学运算、逻辑处理、统计分析和规则式AI、专家系统等为核心,很难称得上智能,人工智能要真正走向智能,需要从如下三个层次进行突破(如图1):


图1 人工智能的三个层次

(1)计算智能:计算智能(Computing Intelligence)的概念由IEEE神经网络学会于1990年提出,通常是指计算机从数据或实验观察中学习特定任务的能力,计算智能是借鉴自然进化等计算方法(如仿生类算法:遗传算法、蚁群算法、DNA计算等,还有如神经网络算法,这些算法也可以看作是数据挖掘,机器学习和人工智能部分支撑技术)以解决复杂的问题。这种方法接近于人的推理方式,即使用不精确和不完整的知识,并能够以自适应的方式产生控制行为,比如使计算机能够理解自然语言的模糊逻辑,使系统通过像生物一样学习数据中的经验和模式。

(2)感知智能:感知智能就是要使机器具有视觉、听觉、触觉等感知能力。这离不开机器学习,所有机器学习方法都是关于从数据中识别出趋势,或者识别数据所适用的类别,以便在提供新的数据时,可以做出适当的预测旨。通过这种学习方式,能初步让机器“看”懂与“听”懂,并据此辅助人类高效地完成如图像识别、语音识别、语言翻译等工作。近年来,以深度学习为核心的机器学习方法取得重大突破和进展,使得机器的感知智能水平正在逐步接近或超过人类,AI当前的研究应用水平就处于这一阶段。

(3)认知智能:相比感知,认知智能更进一步,能初步掌握人类一样的理解、情感和交互能力。旨在让机器学会主动思考、决策及行动,以实现全面辅助或替代人类工作。认知智能具有自适应性,及能随着目标和需求进行自适应变化;交互性,能与外部参与者进行流畅互动和交流;迭代性,能通过反馈、记忆等升级优化自己的能力;最后一点要有对环境的理解能力,比如初步认识和理解所出的世界,对语言交流的环境理解等等。要实现认知智能绝非易事,必须解决机器非监督学习问题,技术难度很大,长期以来进展缓慢。认知智能也会用到各种机器学习技术,但只要机器学习方法是不够的,如何实现记忆、情感和复杂知识推理等,要么需要终极算法的支持,要么是集成多个高级AI子系统的一整套架构协同工作。在这个层面,AI的研究还处于相当初级的水平。

人工智能关键技术与应用领域

如果说大数据技术是金字塔的地基和底座的话,那么AI技术就是金字塔的塔尖。从半个世纪以前人工智能的概念诞生以来,如何制造出智能机器,堪比造时光旅行机一样的魔力,吸引了数代研究人员的努力。迄今为止,积累了大量的基础性知识和相关学科技术。从人工智能产业链来看,AI技术体系包括基础性技术、机器智能技术及人工智能应用三个层面(如图2),其中基础性技术涉及广泛,除了基础的数据管理平台之外,主要包括经典AI方法和计算智能两个方面,经典AI涉及谓词逻辑、知识表示、确定性不确定性推理、专家系统等方法,经典AI方法也有人称之为符号智能,是以知识为基础,通过构建规则关系和逻辑推理来解决相关问题。这种思想认为人脑的思维活动可以通过一系列公式和规则来定义,从某种程度上讲,导致了经典AI研究的识别。从早期的计算智能研究角度看,当时传统的机器学习方法,如贝叶斯网络、支持向量机、决策树等统计概率方法和进化计算方法(如人工神经网络、遗传计算、群智能计算等)也被视为AI的基础性支撑技术。


图2 人工智能关键技术与应用

从最近几年深度学习的突破,再来审视人工智能的发展,真正的机器智能首先要解决感知的问题。而在基础性AI技术成熟之后,借助大数据资源,通过大规模数据的机器学习或深度学习、强化学习,我们离真正意义上的感知智能越来越近。比如语音识别、图像识别、自然语音处理、场景识别和生物识别等领域的初步应用。认知智能由于技术的复杂性估计短时间内难以突破,现阶段还无从谈起,这里暂且略过,后续章节我们再来详细讨论这一问题。AI的应用领域正在向纵深发展,除了语音识别和自然语言(处理,生成和理解)应用之外,还包括大部分目标识别任务,如模式,文本,音频,图像,视频,面部等方面,另外在自动驾驶,医疗诊断,搜索引擎,邮件过滤,打击犯罪,市场营销,机器人等相关领域都将有AI技术的影子。

为什么深度学习能一鸣惊人?让机器大步跨入感知智能时代?深度学习又能否在未来机器攻破认知堡垒的过程中担当大任?下一篇我们就来探秘机器学习与深度学习…

未完待续…

来源:点金大数据 作者:杜圣东